
 

*Corresponding author: Stevens Institute of Technology, Hoboken, NJ 07040, USA.  Email: dduggan@stevens.edu, Tel: +1 (201) 216-8042 
HELINA 2013 M. Korpela et al. (Eds.) 
© 2013 HELINA and JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons 
Attribution Non-Commercial License. DOI: 10.12856/JHIA-2013-v1-i1-60 

8th Health Informatics in Africa Conference (HELINA 2013) 
Peer-reviewed and selected under the responsibility of the Scientific Programme Committee 

 

Aeetes: An App Generator for Sustainable and Secure Health Data 
Collection  

Dominic Duggan a,*, Daniel Golden b, Wenbin Li a, Mark Mirtchouk b, Mark Mschedlivi b, Justice A. 
Muh c, Benjamin Muhoza d, Leonard Ndongo c, David Smith a, Lian Yu a 

a Stevens Institute of Technology, Hoboken, USA 
b Bergen County Academies, Hackensack, USA 

c Research for Development (R4D) International, Yaounde, Cameroon 
d Women’s  Equity  in  Access  to  Care  and  Treatment  (WEACT),  Kigali,  Rwanda 

Background and Purpose: Aeetes represents an approach to patient data collection in LMIC that is 
intended to be scalable, sustainable and secure. 
Methods: Existing approaches to data collection are typically either personal-computer-based or 
enterprise-based. Aeetes occupies a third space, that of peer-to-peer devices. It is intended to occupy a 
spot between the PC-based and enterprise-based approaches, addressing issues that make these 
approaches a poor match with some deployment scenarios. 
Results: The Aeetes approach is characterized by a compiler-based approach to data collection app 
generation: A new data collection app is generated from an input specification of the data to be 
collected and the user interface for data collection. The benefit of this is greater software reliability, 
since the data model is made explicit in the code, and eventually greater security through analysis of 
the code for information flows. Aeetes also takes measures to protect patient confidentiality against 
loss of devices. 
Conclusions: Aeetes represents an approach to moving away from PC-based approaches to data 
collection with poor security characteristics, to an approach that is more reliable and secure, while 
also being sustainable. It is hoped that some of the approach taken by Aeetes may eventually 
influence other systems such as OpenMRS. 

Keywords: Health Impact Assessment, Public Health Informatics, Health Information Management, 
Software Design, Computer Security, Database Management Systems

1 Introduction 

In general, healthcare information technology is regarded as essential to providing efficient and effective 
healthcare delivery. In countries ravaged by pandemics such as HIV/AIDS, healthcare data collection 
plays an important role in healthcare analysis and planning, revealing where resources need to be 
allocated and what treatments are efficacious. Any deployment of healthcare IT in LMIC must meet the 
goals of being scalable, sustainable and secure. Scalability refers to the ability of the technology to scale 
up from small field trials to large numbers of patients in production deployment. Sustainability refers to 
the ability of any such deployment to eventually become self-sufficient, once an initial deployment 
support framework is withdrawn. Finally, security refers to the protection of the confidentiality of patient 
data in such systems. Failure to protect confidentiality can undermine patient trust in the patient-doctor 
relationship, and in some cases expose patients to discrimination, blackmail and even death. 

As part of developing data collection tools for epidemiological studies in several LMICs, we 
considered all three of these criteria, and evaluated several alternative approaches based on their fit with 
the conditions for IT deployment in the member countries. Our approach was designed to address what 

mailto:dduggan@stevens.edu


92 Duggan et al. / Aeetes: An App Generator for Sustainable and Secure Health Data 
 

© 2013 HELINA and JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons 
Attribution Non-Commercial License. DOI: 10.12856/JHIA-2013-v1-i1-60 

were seen as deficiencies in some of the alternative approaches already in use. Those deficiencies were in 
respect of sustainability and security: For some of the alternative systems, it was not clear that they would 
be appropriate to the deployment situations that were envisaged, while for other systems security and 
confidentiality were serious concerns. 

2 Materials and methods 

In surveying the existing systems for patient data collection, we categorized these systems into a few 
broad categories. 

The first category consists of personal computer-based systems that store patient data on desktop or 
laptop computers. Such systems are typically based on Microsoft Windows and the Access database 
management system. An example of such a system is the EPI-INFO system [1] provided by the Centers 
for Disease Control (CDC) , currently in use for example in clinics in Democratic Republic of Congo. 
SQLite is a standard database management system used for the Android and iOS platforms that in some 
ways is similar is Access, so a system similar to EPI-INFO could be developed for mobile devices.  

The second category consists of enterprise-based systems, that adopt a client-server distributed system 
approach to patient data management. We  refer  to  these  systems  as  “enterprise”  because  they  are  typically  
built on an enterprise software stack. For example, the IQCare system [2] is built on SQL Server and the 
Microsoft .NET software platform. The popular OpenMRS open source system [3] is built on the Spring 
and Hibernate Java frameworks for building Web-based enterprise applications. Clients of an OpenMRS 
system typically execute as AJAX applications in a client Web browser, although it is also possible for 
client applications to execute on mobile devices (e.g. Sana Mobile and Open Data Kit [4]-[6]). 

There is a third category of systems, that is in some ways still in a nascent state: That of devices 
organized into a peer-to-peer local network. They are distinguished from personal computer systems by 
the use of a network to coordinate the data on the devices, and they are distinguished from client-server 
systems by the absence of a central server. Our approach fits in this third category, and we argue that this 
is an important architecture to be considered for future IT development for healthcare delivery in LMIC. 

In our view, personal computer systems for patient data management have the following issues. In one 
country where we collect data, informed consent is required of patients that are involved in the study. 
This informed consent is collected electronically, and data collection should prevent the entry of data for 
patients without such consent. But informed consent and data entry are performed by different personnel, 
on different devices. Second, most such systems are, as noted, based on Windows and Access. The 
benefit of this approach is that these systems are broadly familiar to clinic workers, and it is for example 
feasible for relatively technically unsophisticated staff to use form-based tools to formulate ad-hoc 
database queries. However there is a fundamental security flaw in such systems: the very ability of users 
to manage these systems introduces the possibility of social engineering attacks, where users install 
software apps that include malware such as Trojan horses. The unfettered ability of users to self-manage 
these systems is a legacy of business decisions made early in the history of personal computers, and the 
use of techniques such as virtualization and UAC to rectify this situation has met with limited success. 

Our main concern with enterprise approaches is sustainability (ironically, a strong point with personal 
computer systems). An enterprise system composed of a Web server, application container, a persistence 
framework and a database server is a fairly sophisticated system to manage. For example, Tierney et al 
[7] report on the deployment of OpenMRS systems in three African countries. While the experience with 
OpenMRS was positive, deployments struggled once funding for clinic IT staff was withdrawn. With a 
national commitment to OpenMRS, as in Rwanda, it is possible to train a pool of professionals who can 
support OpenMRS deployments, and the relatively small size of the country enables a support strategy 
based on sending centralized IT staff to fix local problems. In a larger country, this strategy will not work 
for small rural clinics that may be many hours of travel away from where IT staff is located. 

Our concerns with secure device management led us to consider the Android platform. Mobility was 
not an issue in this decision, and in fact mobile phones are a poor choice for data entry and were not a 
consideration.  The attraction of Android is that it provides facilities for restricting user device 
management and enabling remote device management. There is already third-party commercial off-the-
shelf (COTS) software, exploiting hooks provided by the Android kernel that can be used to restrict the 
applications that users can install on Android phones. Restricting the applications that can be installed by 
the user on the device is a key factor in protecting the device against malware. For this reason, it was 



Duggan et al. / Aeetes: An App Generator for Sustainable and Secure Health Data 93 
 

© 2013 HELINA and JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons 
Attribution Non-Commercial License. DOI: 10.12856/JHIA-2013-v1-i1-60 

decided early on that Web browsers (including embedded Web browsers using Webviews) should be 
discouraged on a device, because of the potential attack vector provided by mobile Javascript code. In 
addition, the ability to remotely manage such devices has been convincingly demonstrated, for example 
by Google removing malware-containing apps from consumer phones. This  ability  to  manage  devices  “by  
remote  control”  was  a  key  reason  for  our  decision  to  deploy  on  Android  devices. 

There are several different hardware platforms to choose from in our 
deployment. Our current deployment is based on the ASUS Transformer Prime 
tablet, accommodating a docking station that includes a keyboard and 
trackpad. Android laptops are also available, 
such as the Go Note laptop from the 
UK. In future, we will be able to use 
desktop devices such as the HP Slate, that 
provides   a   21”   display   on   an Android device 
that connects to external peripherals such 

as a keyboard and mouse. Non-display devices such as the CompuLabs 
Utilite personal computer provide an ARM-based PC that can run either 
Ubuntu or Android, and includes WIFI, Bluetooth, Gigabit Ethernet and USB connections. Such devices 
may be useful for example as local backup devices. We can expect other forms of embedded devices, 
such  as  “smart  glasses”  as  evidenced  by  Google  Glass,   to  join  this   increasingly  rich  ecology  of  devices  
that our approach is based on. 

Our concerns with sustainability have led us to adopt a 
peer-to-peer architecture for devices within a clinic, 
rather than the client-server architecture favoured by 
enterprise approaches. Our motivation is that IT 
deployment in a clinic without professional IT 
support should be as simple as installing consumer 
electronic devices in a residential household. Effectively users should be able to switch on a device and 
immediately see it working1.  “Underneath   the  hood,”   the  new  device  may  for  example  use  a  discovery  
protocol, for example using WIFI broadcast, to find peers to communicate with. But the device is capable 
of continuing to function in standalone mode if no peers are discovered. In our architecture, data is 
replicated across devices in a clinic, and devices communicate peer-to-peer to share data, transparently to 
the users of these devices. Security is clearly a critical issue in this architecture, particularly since devices 
may be relatively portable. 

3 Results 

In this section, we give a detailed overview of the Aeetes approach to generating and supporting data 
collection tools. 

3.1 User Interface 

Our initial prototype of a data collection tool was based on Open Data Kit. ODK records questionnaires 
as XForms documents, constructed off the device using a form builder such as ODK Build. An Android 
app, ODK Collect, allows these forms to be displayed and filled in on an Android device, typically a 
smartphone. A Web service backend in the app then uploads these filled-in forms to a Web application. 
We adapted a version of ODK Collect, off the main development branch, that has a particularly rich user 
interface   for   tablets,   developed   for   the   New   York   City   Department   of   Health.   Although   clients’   first  
impressions of the app were favourable, more experience with the user interface was less satisfactory. The 
UI reflects the origins of ODK as a data collection system for cell phones. The user experience with this 
interface was inferior to systems such as Access, that allow flexible navigation around the form.  

Our second version therefore developed a native (hand-written) Android interface, with the interface 
designed to mimic as much as possible the user experience with paper-based forms. The user experience 

                                                           
1 Similar consideration lay behind the Jini system [8], developed by Sun Microsystems for network 

appliances.  



94 Duggan et al. / Aeetes: An App Generator for Sustainable and Secure Health Data 
 

© 2013 HELINA and JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons 
Attribution Non-Commercial License. DOI: 10.12856/JHIA-2013-v1-i1-60 

with this interface was more satisfactory. The issues with this version were with the development, and 
with the backend handling of data. Because of the amount of data being collected, the development was 
extremely repetitive and tedious, which in turn increased the possibility of programmer errors, as well as 
making maintenance and routine form changes more difficult than they should be. This mitigated against 
a sustainable approach to data collection. Another issue, shared with the original ODK app, is that data 
collection  is  essentially  “untyped.” The app itself has no knowledge of the data model for the data being 
collected. One of our eventual objectives with this research is to be able to analyse code that handles 
sensitive patient data, to ensure that potentially third-party code does nothing to leak sensitive information 
or violate patient confidentiality. A first step towards this goal is to make explicit the structure of the data 
being collected, and then make sure that each data item is handled (by software) in an appropriate 
manner. 

The Aeetes approach built on these early prototypes, to take a new approach to developing data 
collection tools. As with the second prototype, the user interface is a native Android interface, with the 
potential for questionnaire designers to provide an arbitrarily rich user experience, using all the power of 
the Android GUI. However, rather than developing this interface by hand, it is instead generated by the 
Aeetes compiler, which is at the heart of the approach. The Aeetes markup language is used to describe 
both the user interface and the data model for an application. The markup language is based on the 
language for describing Android user interfaces, including views and view groups. It augments this with 
elements for specifying forms, such as sections and questions. At the heart of the markup language is a 
<select> element for specifying structured data collections, including drop-down lists, radio-button 
lists, check-box lists and tables.  

From this input specification of the user interface, both an Android user interface, and an HTML 
preview, are generated. The Android UI includes a static description of the user interface for forms (in the 
Android markup language), a string resource file (one for each of the languages of the study), and Java 
classes for the user interface for each form. The HTML preview uses HTML5 elements to provide a 
preview of the forms that can be viewed through a Web browser. This is intended to allow data analysts, 
whose input is used to design the forms, to view and critique the forms without requiring access to an 
Android device. Currently the markup specification for a form is done using an XML editor, through a 
dialogue between data analysts and someone conversant with the markup language for forms. An 
interfactive form builder, based on the HTML preview, is under development, to allow data analysts to 
design forms directly. However to realize the full power of the Android UI, we expect that manual 
customization of the form markup specification will always be necessary. 

The reason for form-specific classes in the output of the compiler is that the Aeetes compiler supports 
“typed”  data  collection,  based  on  generating  a  model  of  the  patient  data  being  collected,  and  generating  
user interface code that is specialized to that model. Each form has a corresponding activity class, indexed 
by the patient data model, while each section of the form has a corresponding fragment class for 
managing the screen for that form section, indexed in turn by the corresponding submodel for that section 
of the form. Each input control is in turn indexed by the model for the data item being collected by that 
control. The intention is to eventually leverage this arrangement to augment the data model with security 
information, ensuring for example that only someone with proper authorization can view or edit a 
particular field in a form. 

A data collection study typically consists of several forms, such as an enrolment form, a follow-up 
form and a lost-to-follow-up (LTFU) form. There is typically a high degree of overlap between these 
forms. For example, a form may specify laboratory test results, drug regimens, adherence to treatments, 
etc. The language for these forms must be carefully chosen to be consistent across multi-lingual studies 
(One of the countries we work with has at least two different languages, across different regions), and the 
skip logic must also be consistent between the forms. A markup document therefore describes all of the 
forms in a study, with sections and questions annotated to specify in which forms they appear, in the 
study. The main reason for describing forms this way, instead of separating the forms into separate 
specifications, is that it enables an overall data model for the study to be generated from the input 
specification, and each form related to the parts of this model for which it is designed to gather data. 



Duggan et al. / Aeetes: An App Generator for Sustainable and Secure Health Data 95 
 

© 2013 HELINA and JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons 
Attribution Non-Commercial License. DOI: 10.12856/JHIA-2013-v1-i1-60 

3.2 Data Model 

A major distinction between the Aeetes approach, and that of tools such as ODK and frameworks such as 
OpenMRS, is that we support typed data collection. The Aeetes compiler builds an explicit model of the 
patient data being collected, and statically ensures that the application gathering data is doing so in a type-
safe manner, i.e., data is being handled in a manner consistent with the format of the data storage on the 
computer. As already noted, the motivation for taking this approach is to eventually support static code 
analysis to ensure that patient data is being handled by software in a secure fashion. For example, 
sensitive information should not be output to storage unencrypted, and should not be displayed on the 
screen for users without sufficient authorization to view the data. 

By extracting the data model from the description of the data collection, we are able to relate each 
form generated from that description to the part of the patient data that it is responsible for collecting. The 
default choice is to extract the data model directly from the description of the questionnaire, since the two 
are usually closely related. For example, each section corresponds to a class for a persistent data object in 
the model. However where necessary, it may be useful to specify the model separate from the questions in 
that section, and a mapping used to describe where input data in the questionnaire is stored in the data 
model. 

The default mapping from question type to data type is straightforward. Drop-down lists and radio-
button lists are compiled to enumeration types, with the common special case of Boolean data recognized 
by the compiler. Checkbox lists, and tables with nullable rows, are compiled to lists. Where the rows in a 
checkbox list or table may have structured content, we may generate a class to box that content. In the 
case where different rows in a list have different types associated with them, we generate an abstract base 
class for the overall type, and concrete subclasses for each row in the list. Parts of a model, generated 
from a form specification, are also affected by the role of the form in the study. If a question is only asked 
in one form, and that form only administered once (e.g. in an enrolment form), then the data collected by 
that question comprises a field in the model. If the question is asked in multiple forms, or in a form that is 
administered several times (e.g. in a follow-up form), then the data model specifies a list of values, each 
one with an associated encounter date. 

3.3 Data Handling 

There are several levels at which the data being collected may be viewed: 

 
 
Ultimately the objective is to build a patient data model, based on observations collected from various 

sources. In a data collection tool, these sources are forms filled in by clinicians as a result of patient 
encounters. However there is an intermediate stage between the data collection and its recording as part of 
the data model. Consider for example drug treatment regimens that a patient is currently undertaking. 
Data collection based on paper forms will record for each visit the dosage and frequency of 



96 Duggan et al. / Aeetes: An App Generator for Sustainable and Secure Health Data 
 

© 2013 HELINA and JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons 
Attribution Non-Commercial License. DOI: 10.12856/JHIA-2013-v1-i1-60 

administration for each of the drug treatments that a patient is receiving. Data models such as OpenMRS 
and HIV Cohorts Data Exchange Protocol (HICDEP) model treatment in terms of starting date, ending 
date, dosage and frequency. Data collection must therefore infer, based on differences between treatments 
from one encounter to the next, changes that have occurred in the treatment regimens. This is reflected by 
the intermediate stage above, between data collection and recording the data in the model. 

An alternative approach is, rather than inferring changes in treatment from the data collected, to 
directly record the updates themselves. To do so requires a technically small, but conceptually large, 
change to the app. Rather than simply entering forms and uploading this data to a date warehouse, as with 
ODK, we may retain at least some part of the data in a database on the device. Data entry then consists 
not simply of filling in parts of a form that is initially empty, but also in some cases consists of updating 
parts of the database (in this case, to change drug treatments). This can avoid inference errors from data 
collection, and also serve as a useful data quality check at the clinic level. There are also other 
considerations. Providing even a simple EMR may enhance acceptance of the data collection tools in a 
clinic, since users will experience a tangible benefit from the use of the tools in their workflows. 

There are other reasons for working at the level of data updates rather than data snapshots. In the peer-
to-peer  setting   for   this  app,  devices   share  data  using  “gossip  protocols.”  Periodically  a  device  selects  a  
peer and exchanges its data with that peer. There are two broad approaches to performing this sharing. 
One approach is to exchange the parts of a database that have been modified on one device but not the 
other. Another approach is for each device to keep an operation log, recording the update operations that 
have been performed on the data. A device then exchanges its data with another device by sending the 
operations not yet seen on the peer device. Once received at the peer device, the update operations are 
replayed there to bring the peer device up to the same state as the source device. The advantage of this 
update-based approach is that there are protocols that substantially reduce the amount of metadata that 
must be exchanged for the peer devices to identify the information that must be exchanged, while there 
are issues with extending these protocols to synchronization based on exchanging parts of the database 
[9]. 

To support the update-based approach, parts of the patient data model may be cached on the device. A 
new form may then be populated with the cached contents of the previous instance of this form for the 
patient, to allow direct updating of the date. These updates, along with updates for filling in other parts of 
the forms, are exchanged peer-to-peer with other devices, and eventually uploaded to the data warehouse 
for data analysis. Conceptually this uploading could be performed on a continuous basis, providing the 
data  warehouse  with  an  “almost-real-time”  view  of  the  clinic  data. Practically, there are good reasons to 
batch the updates for uploading. 

3.4 Security 

Security of the data being collected is obviously paramount. This is particularly true when sensitive 
patient data is being stored on relatively small devices that may be lost or stolen. One of the challenges 
with deploying our approach has been to convince our collaborators not to adopt desktop computers for 
their clinic IT systems. Their understandable motivation has been that it is more difficult for a desktop 
computer to be stolen than a laptop or tablet. Nevertheless, the days of the desktop personal computer are 
numbered, and we have prevailed upon them to accept the future. The challenge remains then to make 
sure that patient data is properly protected. 

It might be considered that, as long as no identifying patient information is kept on the device, data 
loss is no worse than publishing anonymized patient data. For example, for the purposes of 
epidemiological studies, patients can be identified by a study identifier rather than their medical record 
number. There are several objections to this. First, there are variables in the data, such as date of birth, 
that are considered quasi-identifiers, but which epidemiologists wish to collect for analysis. There are 
now well-known de-anonymizing attacks, such as the Netflix attack, that can be used to expose the 
identity of parties in a dataset from which identifying information has supposedly been removed. These 
attacks are based on correlating information in the dataset with another dataset that still retains identifying 
information. Second, there are scenarios where it may in fact be necessary to store the patient record 
number on the device. For example, much of the data useful for studies is stored in register books of 
various kinds, as mandated by government regulations, with patients identified in registers by their 
medical record number. Requiring  a  data  entry  person  to  look  up  a  patient’s  study  identifier for every line 



Duggan et al. / Aeetes: An App Generator for Sustainable and Secure Health Data 97 
 

© 2013 HELINA and JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons 
Attribution Non-Commercial License. DOI: 10.12856/JHIA-2013-v1-i1-60 

in a register book is infeasible. This mapping must be performed by the app itself, even though the 
medical record number should never be part of the data that is uploaded to the data warehouse. 

Our threat model assumes that any attacker who has access to a device can eventually bypass any 
access restrictions on the device, be they in the app or in the underlying Android/Linux operating system, 
and access any data stored on the device. Our strategy for protecting the data on a device is to keep the 
data encrypted in storage, and require an attacker to have three things in order to be able to compromise 
the data. Although Android supports encryption of the file system, we do not make use of this for several 
reasons. File system encryption is based on password-based encryption, and this does not provide a 
sufficient level of security. Furthermore, there is a problem if the user forgets their (Android) password. 
We instead implement our own encryption of patient data, and provide escrow for information that is 
required to access the data. 

The data for a device is encrypted using an AES secret key. This provides a much higher level of 
security than a user password. Clearly storing this password on the device itself is insufficient, given our 
threat model. We instead store the secret encryption key off the device, as a QR code on a card. A user 
who logs in to access patient data is required to present the QR code. The app takes a picture using the 
device’s  camera,  decodes  the  encryption  key  stored in the QR code, and can then use this key to decrypt 
data stored on the device. Obviously if both a device and its QR code are stolen, or if the QR code is 
photographed and the device stolen, this scheme will be subverted. Our recommended practice is that the 
QR code stays under the supervision of the administrator at all times, stored in a locked cabinet that only 
the administrator has access to. A user logging in will need to physically go to the administrator to obtain 
the QR code. A device that has been inactive for a period may require a user to authenticate with their 
password, while the device remembers the QR code. After a longer period, such as a lunch break, the 
device should forget the QR code and require another visit to the administrator to obtain the code. The 
ultimate goal is to ensure that an attacker who steals a device does not have access to the QR code 
anywhere on the device, and therefore cannot compromise the confidentiality of the data.  

We still plan for the worst-case scenario, where a QR code is compromised in some way. We pair each 
device with its own private encryption key. We do this using a master password, unique for each device, 
and used as an authentication key for the encryption key. The key stored as a QR code is the encryption 
key, encrypted in turn using the master password. Both the encryption key and the master password are 
created in advance, with the QR code, by central IT administration. As part of installing the app on a 
device, the administrator enters the master password and presents the QR code to the camera. The app 
initialization decodes the password-encrypted encryption key in the QR code, decrypts and authenticates 
the encryption key using the master password, and then encrypts the master password using the 
administrator password and stores it in a record for the administrator in the user database on the device. 
Every time the administrator creates a new user account, the master password is encrypted using that 
user’s  password  and  stored  with  their  record   in the user database. Therefore every user, once they have 
authenticated with their user password, has access to the master password in their use of the app. To log 
in, a user must present both the QR code and their user password. Once the user is authenticated, their 
password is used to decrypt the master password, and the master password is in turn used to decrypt and 
authenticate the encryption key provided in the QR code. 

An attacker wishing to access the data on the device must therefore have the physical device itself, a 
copy of the QR code that is specific to that device itself, and the password of a user on that device. 
Clearly all of these can be obtained via an insider attack, unless we have procedures such as described 
above for preventing theft of the QR code. The user password provides a line of defence against the 
scenario where for example a thief breaks in and steals both a device and a QR code. The last line of 
defence   is   a   “kill   switch”   for   the   device,   administered   in   both   a  push-based way (using Google Cloud 
Messaging) and in a pull-based way (if the app attempts its normal background processing by contacting 
the data warehouse in the cloud). 

Peer-to-peer data sharing is complicated by the use of per-device encryption keys, since we cannot 
assume a single shared encryption key for sharing all data across devices. Instead we require every device 
to have its own RSA public-private key pair, generated as part of installing the app on the device. Devices 
share their public encryption keys as part of discovery, and a source device sharing updates with a sink 
device must first generate an AES session key for the duration of the synchronization, encrypt the session 
key  using  the  sink  device’s  public  key,  encrypt  updates  to  be  sent  to  the  sink  device  using the session key, 



98 Duggan et al. / Aeetes: An App Generator for Sustainable and Secure Health Data 
 

© 2013 HELINA and JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons 
Attribution Non-Commercial License. DOI: 10.12856/JHIA-2013-v1-i1-60 

and then send the encrypted session key and updates to the sink device. A very similar protocol is used 
for pushing updates to the data warehouse. 

4 Discussion 

Aeetes is not intended necessarily to replace existing PC-based and enterprise-based approaches to data 
collection. Rather it fills a gap that we have perceived in such tools, between simple Access-based 
approaches and more sophisticated approaches such as OpenMRS. We believe (or least hope) that the 
days of Access-based approaches are numbered. Our reason for hoping this is true is due to the security 
issues with Windows-based, Access-based approaches to data collection and storage. Today the private 
records of hundreds of thousands of HIV/AIDS patients reside unencrypted on Windows devices 
potentially infected by malware. The Aeetes approach suggests a possible migration path away from 
Access to more sophisticated and more secure approaches. 

There is much that we would still like to accomplish, to make Aeetes a viable long-term alternative to 
Access systems. Our point of comparison for Access-based approaches is the EPI-INFO system supported 
by CDC. The two advantages cited for EPI-INFO are: (a) the ability to automatically generate a database 
schema from a user interface, and (b) the ability to program extensions, particularly for data analyses. The 
Aeetes compiler provides the former ability, and our next task is to develop a framework for supporting 
the latter. One issue here is that the Android platform has a difficult programming model, using 
asynchrony and callbacks ubiquitously to keep long-running computations off the main UI thread, and 
with an application life cycle model that is more complicated than that for more conventional operating 
systems that simply swap processes in and out transparently to application programmers. We are 
developing a domain-specific programming language for Aeetes extensions with the intention that 
programmers of extensions will be able to avoid the use of callbacks entirely. The kinds of extensions that 
we are focused on are on-device analyses of patient data, based on the experience with EPI-INFO. 

We have not said anything about databases, because for now we have found it unnecessary to use 
databases. The app contains several content providers (for users, forms, form instances, etc), implemented 
using SQLite, but mostly these are simple tables. The implementation of role-based access control is the 
only place where we found it necessary to model relationships in the database schema. The relationships 
in patient data are one-to-one or one-to-many, represented in our schemas as lists. So a document-oriented 
NoSQL database such as Couchbase would suffice to store patient data. For now, we are storing patient 
data in files because of the need to store the data encrypted. It also keeps the runtime of a non-standard 
database management system outside our trusted computing base. We expect to revisit this at some point 
in the future, since some form of map-reduce-based parallel processing may be necessary to support 
efficient data analyses. 

OpenMRS has demonstrated the value of having an extensible component framework for building 
EMRs in an open source community. Although designed initially as a data collection system, Aeertes 
could become the foundation for an EMR, less ambitious and simpler than OpenMRS, but perhaps more 
appropriate to some situations where IT support is lacking. It is therefore intended to occupy a different 
market niche from OpenMRS. We have some hope that some of Aeertes approach, in particular the use of 
a compiler to generate concept schemas, may eventually make its way into the OpenMRS community, 
since it can support more reliable and eventually more secure data handling. 

Other systems have also explored the space of peer-to-peer architectures for data collection. 
AndroidOpenMRS combines an interface implemented using ODK with an implementation of the 
OpenMRS concept dictionary in SQLite, and includes peer-to-peer data replication. The focus in Aeetes 
has been on an improved user interface, by compiling from input specifications to native Android user 
interfaces, explicitly modelling the data being collected for reliability and security, protecting the 
confidentiality of patient data against attacks such as device theft. 

Acknowledgements 

Thanks to Kathryn Anastos, Paul Biondich, Hamish Fraser, Edward Friedman, Bobby Jefferson, Andrew 
Kanter and Tom Routen for helpful conversations. This work was supported by NIH grant number 



Duggan et al. / Aeetes: An App Generator for Sustainable and Secure Health Data 99 
 

© 2013 HELINA and JHIA. This is an Open Access article published online by JHIA and distributed under the terms of the Creative Commons 
Attribution Non-Commercial License. DOI: 10.12856/JHIA-2013-v1-i1-60 

1U01AI096299-01 (Central Africa IEDEA), in collaboration with Kathryn Anastos, Donald Hoover, 
Denish Nash and Qiuhu Shi. 

References 

[1] “EPI  INFO.”  Download available from http://wwwn.cdc.gov/epiinfo. 
[2] “IQCare”. Download available form http://fgiqcare.codeplex.com. 
[3] “OpenMRS.” Download available from http://www.openmrs.org. 
[4] “Sana  Mobile.” Download available from http://sana.mit.edu. 
[5] “Open  Source  Data  Collection  in  the  Developing  World.” Y. Anokwa, C. Hartung, W. Brunette, A. Lerer, G. 

Borriello. IEEE Computer, 2009. 
[6] “Evaluation   of   an   Android-based mHeath System for Population   Surveillance   in   Developing   Countries.” 

Rajput et al, AMIA, 2011. 
[7] “Experience   Implementing   Electronic   Health   Records   in   Three   East   African   Countries,” Tierney et al, 

AMIA Annual Symposium Proceedings, 2010. 
[8] “Jini  Technology:  An  Overview.” S. I. Kumaran, Pearson Education, 2001. 
[9] “Replicated  Data  Management  for  Mobile  Computing.”  D.  Terry,  Morgan  &  Claypool,  2008. 


